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Abstract

We investigate claims made in Giacomini and White (2006) and Diebold (2015) re-
garding the asymptotic normality of a test of equal predictive ability. A counterexample
is provided in which, instead, the test statistic diverges with probability one under the
null.
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1 Introduction

We describe a data generating process and forecasting exercise that yields a Diebold-

Mariano (1995) test statistic ΘT that diverges under the null of equal predictive ability.

We do so to address two claims made in the literature on tests of this null. The first is

made in Giacomini and White (2006). The authors claim their Theorem 4 applies when

model parameters are estimated using a fixed and finite window of observations and, sub-

sequently, ΘT is asymptotically standard normal under the null. The second is made in

Diebold (2015). The author claims that, as long as the loss differentials are covariance

stationary, ΘT must be asymptotically standard normal under the null. We show with a

counterexample that both claims are incorrect.

Consider an application in which the accuracy of a no-change point forecast of a scalar

yt+1 is compared with the accuracy of a forecast based on a location model that is estimated

using a fixed and finite window of observations R <∞. That is, ŷ1,t+1 = 0 while ŷ2,t+1 = ȳt

where ȳt = ȳR = R−1
∑R
s=1 ys for all forecast origins t = R, ..., R + P − 1 = T − 1.

Under quadratic loss, the loss differential takes the form d̂t+1 = (yt+1 − 0)2 − (yt+1 − ȳt)2.

Straightforward algebra reveals that if yt = µ+ εt with εt ∼ i.i.d.N(0, σ2), the null of equal

predictive ability Ed̂t+1 = 0 holds for all t when µ = σ/
√
R.

To test the null hypothesis we use the statistic ΘT = P−1/2
∑T−1
t=R d̂t+1/ω̂, where

ω̂2 = P−1
∑T−1
t=R d̂

2
t+1. We are interested in the behavior of this statistic as P diverges.

Rearranging terms we find that

ΘT =
2(P−1/2

∑T−1
t=R εt+1)ȳR + P

1/2(µ2 − (R−1
∑R
s=1 εs)

2)
√
4ȳ2R(P

−1
∑T−1
t=R ε

2
t+1) + 4ȳ

2
R(2µ− ȳR)(P−1

∑T−1
t=R εt+1) + (µ

2 − (R−1
∑R
s=1 εs)

2)2
.

As P diverges, the denominator is Op(1). In contrast, while the first part of the numer-

ator is Op(1), the second part diverges to ±∞ with probability one. Together this implies

that ΘT is not asymptotically standard normal under the null and, in fact, diverges with

probability one. Unreported simulations reinforce the analytical example: for reasonable

values of R and P , the test exhibits severe size distortions.

The root cause of the problem is not whether the loss differentials are covariance station-

ary. The problem is that the fixed and finite estimation window implies loss differentials

that do not exhibit short memory. In the example, the loss differentials are covariance

stationary but the autocovariances never die out.

Although the example suffices to counter the claims made in Giacomini andWhite (2006)

and Diebold (2015), it does not necessarily overturn any existing applications that use ΘT to
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conduct a test of equal predictive ability. In many such applications, model parameters are

estimated using a rolling window of observations, in which case Theorem 4 of Giacomini and

White (2006) remains valid. Nevertheless, the potential for future applications in which the

loss differential is covariance stationary, and yet ΘT is not asymptotically normal, remains.

In particular, it is easy to find extensions and applications of Giacomini and White (2006)

that continue to claim the fixed estimation scheme is a viable option. An early example

includes Giacomini and Komunjer (2005), but later examples can be found in our own work

(Clark and McCracken, 2013) as well as very recent work by Rossi and Sekhposyan (2019).
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